
OPC Security Custom Interface (Version 1.0)
TM

OPC Security Custom Interface

Version 1.0

October 17, 2000

1

OPC Security Custom Interface (Version 1.0)

Specification Type Industry Standard Specification

Title: OPC Security Custom

Interface
Date: October 17,

2000

Version: 1.0 Soft MS-Word
 Source: Opc Security -

Custom -
R100.doc

Author: OPC Foundation Status:

Synopsis:
This specification is the specification of the interface for developers of OPC
clients and servers.. The specification is a result of an analysis and design
process to develop a standard interface to facilitate the development of servers
and clients by multiple vendors that shall inter-operate seamlessly together.

Trademarks:
Most computer and software brand names have trademarks or registered
trademarks. The individual trademarks have not been listed here.

Required Runtime Environment:
An OPC Server running on Windows 9X with DCOM, Windows CE 2.11,
Windows NT 4.0 SP5 or later

2

OPC Security Custom Interface (Version 1.0)
NON-EXCLUSIVE LICENSE AGREEMENT

The OPC Foundation, a non-profit corporation (the “OPC Foundation”), has established a set of standard
OLE/COM interface protocols intended to foster greater interoperability between automation/control
applications, field systems/devices, and business/office applications in the process control industry.

The current OPC specifications, prototype software examples and related documentation (collectively, the
“OPC Materials”), form a set of standard OLE/COM interface protocols based upon the functional
requirements of Microsoft’s OLE/COM technology. Such technology defines standard objects, methods,
and properties for servers of real-time information like distributed process systems, programmable logic
controllers, smart field devices and analyzers in order to communicate the information that such servers
contain to standard OLE/COM compliant technologies enabled devices (e.g., servers, applications, etc.).

The OPC Foundation will grant to you (the “User”), whether an individual or legal entity, a license to use,
and provide User with a copy of, the current version of the OPC Materials so long as User abides by the
terms contained in this Non-Exclusive License Agreement (“Agreement”). If User does not agree to the
terms and conditions contained in this Agreement, the OPC Materials may not be used, and all copies (in
all formats) of such materials in User’s possession must either be destroyed or returned to the OPC
Foundation. By using the OPC Materials, User (including any employees and agents of User) agrees to be
bound by the terms of this Agreement.

LICENSE GRANT:

Subject to the terms and conditions of this Agreement, the OPC Foundation hereby grants to User a non-
exclusive, royalty-free, limited license to use, copy, display and distribute the OPC Materials in order to
make, use, sell or otherwise distribute any products and/or product literature that are compliant with the
standards included in the OPC Materials.

All copies of the OPC Materials made and/or distributed by User must include all copyright and other
proprietary rights notices include on or in the copy of such materials provided to User by the OPC
Foundation.

The OPC Foundation shall retain all right, title and interest (including, without limitation, the copyrights) in
the OPC Materials, subject to the limited license granted to User under this Agreement.

WARRANTY AND LIABILITY DISCLAIMERS:

User acknowledges that the OPC Foundation has provided the OPC Materials for informational purposes
only in order to help User understand Microsoft’s OLE/COM technology. THE OPC MATERIALS ARE
PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, WARRANTIES OF PERFORMANCE, MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT. USER BEARS ALL RISK
RELATING TO QUALITY, DESIGN, USE AND PERFORMANCE OF THE OPC MATERIALS. The
OPC Foundation and its members do not warrant that the OPC Materials, their design or their use will meet
User’s requirements, operate without interruption or be error free.

IN NO EVENT SHALL THE OPC FOUNDATION, ITS MEMBERS, OR ANY THIRD PARTY BE
LIABLE FOR ANY COSTS, EXPENSES, LOSSES, DAMAGES (INCLUDING, BUT NOT LIMITED
TO, DIRECT, INDIRECT, CONSEQUENTIAL, INCIDENTAL, SPECIAL OR PUNITIVE DAMAGES)
OR INJURIES INCURRED BY USER OR ANY THIRD PARTY AS A RESULT OF THIS
AGREEMENT OR ANY USE OF THE OPC MATERIALS.

3

OPC Security Custom Interface (Version 1.0)
GENERAL PROVISIONS:

This Agreement and User’s license to the OPC Materials shall be terminated (a) by User ceasing all use of
the OPC Materials, (b) by User obtaining a superseding version of the OPC Materials, or (c) by the OPC
Foundation, at its option, if User commits a material breach hereof. Upon any termination of this
Agreement, User shall immediately cease all use of the OPC Materials, destroy all copies thereof then in its
possession and take such other actions as the OPC Foundation may reasonably request to ensure that no
copies of the OPC Materials licensed under this Agreement remain in its possession.

User shall not export or re-export the OPC Materials or any product produced directly by the use thereof to
any person or destination that is not authorized to receive them under the export control laws and
regulations of the United States.

The Software and Documentation are provided with Restricted Rights. Use, duplication or disclosure by
the U.S. government is subject to restrictions as set forth in (a) this Agreement pursuant to DFARs
227.7202-3(a); (b) subparagraph (c)(1)(i) of the Rights in Technical Data and Computer Software clause at
DFARs 252.227-7013; or (c) the Commercial Computer Software Restricted Rights clause at FAR 52.227-
19 subdivision (c)(1) and (2), as applicable. Contractor/ manufacturer is the OPC Foundation, 20423 State
Road 7, Suite 292, Boca Raton, FL 33498.

Should any provision of this Agreement be held to be void, invalid, unenforceable or illegal by a court, the
validity and enforceability of the other provisions shall not be affected thereby.

This Agreement shall be governed by and construed under the laws of the State of Minnesota, excluding its
choice or law rules.

This Agreement embodies the entire understanding between the parties with respect to, and supersedes any
prior understanding or agreement (oral or written) relating to, the OPC Materials.

4

OPC Security Custom Interface (Version 1.0)
Table of Contents

1. INTRODUCTION ...7

1.1 BACKGROUND ..7
1.2 KEY REQUIREMENTS ..7
1.3 PURPOSE...7
1.4 RELATIONSHIP TO OTHER OPC SPECIFICATIONS..7
1.5 SCOPE OF THIS SPECIFICATION...7

1.5.1 Security Aspects ..7
1.5.2 Levels of Security ..7
1.5.3 Operating Systems...7

1.6 PREREQUISITES ..8
1.7 DELIVERABLES...8

2. FUNDAMENTAL CONCEPTS...9

2.1 SECURITY REFERENCE MODEL...9
2.1.1 Authorization vs. Authentication...10

2.2 APPLICATION OF THE MODEL IN THIS SPECIFICATION..10
2.2.1 Principals ..10
2.2.2 Access Certificates...10
2.2.3 Security Objects ...10
2.2.4 Access Control Lists ..10
2.2.5 Reference Monitor ...11
2.2.6 Channels ..11

2.3 LEVELS OF SECURITY ...11
2.4 PRIVATE CREDENTIAL VS. NT ACCESS TOKEN ..11
2.5 OPTIONAL IOPCSECURITYNT AND IOPCSECURITYPRIVATE INTERFACES....................................12
2.6 BACKWARD COMPATIBILITY..12

3. OPC SECURITY QUICK REFERENCE ...13

3.1 “OPCSERVER” OBJECT ..13
3.1.1 IOPCSecurityNT ...13
3.1.2 IOPCSecurityPrivate ...13

4. CUSTOM REFERENCE..14

4.1 INTERFACE ISSUES..14
4.2 OVERVIEW ...14

4.2.1 Behavior of Servers Implementing Both OPC Security Interfaces..14
4.3 IOPCSECURITYNT...15

4.3.1 IOPCSecurityNT::IsAvailableNT..16
4.3.2 IOPCSecurityNT::QueryMinImpersonationLevel...17
4.3.3 IOPCSecurityNT::ChangeUser..18
4.3.4 Use Scenario ..19

4.4 IOPCSECURITYPRIVATE ..20
4.4.1 IOPCSecurityPrivate::IsAvailablePriv ..21
4.4.2 IOPCSecurityPrivate::Logon...22
4.4.3 IOPCSecurityPrivate::Logoff ..23
4.4.4 Use Scenario ..24

4.5 NT CREDENTIAL APPROACH ..25
4.5.1 Server Security ..25
4.5.2 Client Security ...26

5. INSTALLATION ..28

5.1 SERVER INSTALLATION ISSUES...28
5.2 CLIENT INSTALLATION ...28

5

OPC Security Custom Interface (Version 1.0)
6. APPENDIX ..29

6.1 IDL FILE ..29
6.1.1 OPC Security Custom Interface IDL Specification ...29

6.2 OPCERRSEC.H..31
6.3 GUIDELINES ...33

6.3.1 DCOM Security Setup and Settings ..33
6.3.2 In-Process Server Considerations ..36
6.3.3 Local/Remote Server Configuration Parameters ...37
6.3.4 Windows 2000 and Windows NT Considerations...38

6

OPC Security Custom Interface (Version 1.0)
1. Introduction

1.1 Background
OLE for Process Control has defined interfaces for Data Access Servers, Event Servers, and Historical
Data Access Servers. These servers provide information that is valuable to the enterprise and if
improperly updated, could have significant consequences to plant processes. Therefore, there is a need
to control client access to these servers in order to protect this sensitive information and to guard
against unauthorized modification of process parameters.

1.2 Key Requirements
Security must be provided in a standard manner, consistent among implementations of OPC Servers by
various vendors, to permit the implementation of portable client applications.

Security must be well integrated with Windows NT and be as transparent as possible to the client
application. Ideally, security should “just be there” with no special actions by the client application
required in order for security to be enforced.

1.3 Purpose
The purpose of this document is to specify how OPC Servers should implement security using
operating system facilities. In addition, usage guidelines are provided for the OPC Client
implementation to interact with a security aware OPC Server.

1.4 Relationship to Other OPC Specifications
This specification is analogous to the OPC Common specification in that it applies to all of the defined
OPC Servers.

1.5 Scope of This Specification

1.5.1 Security Aspects
This specification focuses on client identification, that is the exchanging of trusted credentials to be
used for access authorization decisions by the OPC Server. It does not address which objects are to be
secured, but leaves this matter to the OPC Server implementers.

1.5.2 Levels of Security
This specification permits multiple levels of security to maintain coexistence with legacy OPC
applications and to provide enhanced security capabilities.

1.5.3 Operating Systems
This specification applies to the following computer platforms:

Windows NT 4.0, Service Pack 5 and later, including Windows 2000 – Full client/server functions are
supported.

Windows 95/98 – Full client/server functions are supported, with restrictions based on the limited
security model.

Windows CE 2.11 and later - Full client/server functions are supported, with restrictions based on the
limited security model. Third party support is required for DCOM transport.

7

OPC Security Custom Interface (Version 1.0)
Other Platforms – This specification may apply to other platforms (such as UNIX) based on the

availability of DCOM implementations on such platforms.

1.6 Prerequisites
Readers are assumed to be familiar with the applicable OPC Specifications; for example, OPC
Common, OPC Data Access, OPC Alarms and Events, and OPC Historical Data Access.

These following document titles and others can be found at the following Web address:
http://www.opcfoundation.org/specs.asp:

OPC Data Access Custom Interface 2.0

OPC Data Access Automation Interface 2.0

OPC Alarms and Events 1.0

OPC Common Definitions and Interfaces 1.0

Readers should be familiar with DCOM and with Windows 2000 security features and security
administration.

Information regarding Distributed COM and various links to related sites, white papers, specs, etc, can
be found at the following Web address: http://www.microsoft.com/com/tech/DCOM.asp

Specifications on DCOM/COM and release notes on COM+ can be found in the MSDN Online
Library at the following Web address: http://www.microsoft.com/com/resources/specs.asp

A white paper on third party DCOM implementations for Windows CE can be found at the following
Web address: http://www.microsoft.com/industry/man/whitepapers/whitepapers.asp

1.7 Deliverables
This document covers the analysis and design for a COM compliant custom interface. A separate
document describes a related OLE Automation interface.

8

http://www.opcfoundation.org/specs.asp
http://www.microsoft.com/com/tech/DCOM.asp
http://www.microsoft.com/com/resources/specs.asp
http://www.microsoft.com/industry/man/whitepapers/whitepapers.asp

OPC Security Custom Interface (Version 1.0)
2. Fundamental Concepts

2.1 Security Reference Model
To understand this specification, it is helpful to first examine a security reference model. This model
is intended to serve as a conceptual framework for the remainder of the specification. It is consistent
with the Windows NT security model.

The figure below shows the elements of the security model.

The key elements of the security reference model are as follows:

s

Objects

Access
Certificates ACLs

Securit
y

Reference
Monitor

Principal

Communication Channels

Principal – An active entity which has a need to access one or more security objects. Some examples
of Principals are human users, computer systems, etc. In Windows NT, NT processes represent all
Principals, which can be either interactive or service.

Security Object – Any entity to which access is to be controlled. Some examples of security objects
are files, directories, registry keys, key systems, etc.

Reference Monitor – An active entity which makes access authorization decisions for a set of security
objects. A well-implemented security system ensures that all access requests for a security object
are routed through its associated reference monitor, that is to say, no access to a security object
can be granted except by the approval of its reference monitor. An example of a reference monitor
is the NT reference monitor for NTFS files and directories.

Access Control List (ACL) – A structure associated with every security object which specifies those
Principals and groups of Principals allowed to access the secure object along with the types of
access each is allowed. Examples of ACLs are the NT Access Control Lists that are associated
with files, directories, DCOM servers, registry keys, etc.

Channel – A communication path between any two active entities within the system. A channel may
be entirely contained within a single system, for example inter-process communications between
two processes co-located on the same system. Alternatively, a channel may span computer
systems using a communications network. A channel that is contained within a single computer
system is typically considered to be secure. A channel that spans computer systems is typically

9

OPC Security Custom Interface (Version 1.0)
considered to be insecure, unless specific actions have been taken to secure it. A channel may be
secured to one of three levels:

Authenticated – A recipient can be confident of the identity of a message sender.

Verifiable – A recipient can be confident that the message has not been modified in transit.

Private – A sender can be confident that the message will be read only by the intended recipients.

Access Certificate – A trusted credential associated with a Principal, which is used by a Reference
Monitor as a basis for an access authorization decision. An example of an access certificate is the
NT Access Token associated with every NT process.

2.1.1 Authorization vs. Authentication
Authorization is the process of granting a Principal access to a security object. The authorization
decision is made by the Reference Monitor, based on a comparison of the Principal’s access certificate
to the security object’s access control list.

Authentication is a property of the underlying communications channel, and refers to the ability of the
Reference Monitor to be confident of the validity of the identity and credentials of a Principal
requesting access to a security object.

2.2 Application of the Model in This Specification

2.2.1 Principals
The Principals covered in this specification are computer processes running on one of the client or
server operating systems specified in Section 1.4.2. Programs or applications are not Principals in their
own right, but are assigned the access rights of the processes in which they are running. In NT, all
processes run under user accounts, which specify their access rights.

2.2.2 Access Certificates
In this specification, the Access Certificate is either:

1. The NT Access Token, which should be used wherever possible

or

2. A private credential specified by the OPC Server.

See section 2.4 Private Credential vs. NT Access Token for further explanation.

2.2.3 Security Objects
This specification deals only with OPC Server applications and Client applications (in the case of call-
back interfaces), and any vendor specific security objects which are implemented by the OPC Server.
Examples of such vendor specific security objects are server interfaces and methods, public groups,
and individual or sets of data items. However, such security objects are vendor specific. Although the
determination of which objects to secure is up to the OPC Server vendor, the manner in which they are
secured must conform to the specification.

2.2.4 Access Control Lists
In this specification, Access Control Lists are the NT Access Control Lists, with the possible exception
of OPC Security using private credentials discussed later.

10

OPC Security Custom Interface (Version 1.0)
2.2.5 Reference Monitor

This specification deals with the following reference monitors:

• The NT Reference Monitor, which controls access to DCOM servers and client applications.

• OPC Servers that make access authorization decisions for vendor specific objects. They will make
their authorization decisions based on the NT Access Token or on a vendor specific private
credentials. The NT Access Token is the preferred approach.

2.2.6 Channels
This specification deals only with Channels supported by DCOM. The channel security levels are
those supported by DCOM, that is to say connect, call, packet, packet integrity, and packet privacy.

2.3 Levels of Security
An OPC Server may implement one of three levels of security:

Disabled Security – No security is enforced. Launch and Access permissions to the OPC Server are
given to everyone, and Access permissions for clients are set for everyone. The OPC Server does
not control access to any vendor specific security objects.

DCOM Security – Only NT DCOM security is enforced. Launch and Access permissions to the OPC
Server are limited to selected clients, as are the Access permissions for client applications.
However, the OPC Server does not control access to any vendor specific security objects. This is
the default security level provided by DCOM.

OPC Security – The OPC Server serves as a reference monitor to control access to vendor specific
security objects that are exposed by the OPC Server. An OPC Server may implement OPC
Security in addition to DCOM Security, or implement OPC Security alone.

2.4 Private Credential vs. NT Access Token
Whenever possible an OPC Server which implements OPC Security should base its access
authorization decisions upon the NT Access Token associated with the client application. This
approach allows security to be transparent to client applications because there is no need to take
explicit action to establish an additional access certificate. Also, since the NT Access Token is
independent of the OPC Server, this approach makes it easier to write portable client applications.

However there are circumstances which preclude the use of the NT Access Token. Some examples of
such situations include:

• The OPC Server is running on a non-NT operating system that supports DCOM such as Windows
CE or UNIX.

• Client applications may be running on an operating system that does not support the creation of an
NT Access Token.

• The OPC Server and client applications are distributed on multiple devices outside the context of
an NT Domain.

To address such situations, this specification defines the ability for the OPC Server to implement a
private credential (access certificate) which it verifies. An example might be an OPC Server specific
UserID and password combination. It is up to the OPC Server to use mechanisms that prevent the
compromise of these credentials. For example, passwords should not be transmitted in clear text, nor
should they be stored on disk in clear text.

OPC Servers that need to support client applications which have NT Access Tokens, as well as clients
which do not have NT Access Tokens, may implement support for both types of access certificates, on

11

OPC Security Custom Interface (Version 1.0)
a client-by-client basis. This approach provides a transparent security implementation for those clients
with NT Access Tokens, while providing security for those clients without NT Access Tokens.

2.5 Optional IOPCSecurityNT and IOPCSecurityPrivate Interfaces
OPC Servers that implement OPC Security must implement one or both of the IOPCSecurityNT or
IOPCSecurityPrivate interfaces. Existence of these interfaces allows client applications to determine if
OPC Security is implemented, and if so, which types of access certificates are supported.

2.6 Backward Compatibility
OPC Servers that implement Disabled Security or DCOM Security are fully compatible with clients
which are not security aware.

OPC Servers that implement OPC Security based on the NT Access Token are also fully compatible
with clients that are not security aware. Certain authentication and impersonation levels are required,
see section 6.3.1.1 Recommended Security Setup.

OPC Servers that implement OPC Security based on a private credential are compatible with clients
which are not security aware only in a degenerate sense, in that such clients will always be denied
access when attempting to access security objects.

12

OPC Security Custom Interface (Version 1.0)
3. OPC Security Quick Reference

This section includes a quick reference for both Custom and Automation Interface methods. These
interfaces, their parameters, and behavior are defined in more detail later in the reference sections.

3.1 “OPCServer” Object
“OPCServer” may be one of the following: OPC (Data Access) Server, OPC Event Server, or OPC
HDA Server. The intent is that these interfaces be added to the above server objects, similar to the
implementation of IOPCCommon.

This section does not show additional standard COM Interfaces such as IUnknown, IEnumString and
IEnumUnknown used by other OPC Specifications.

[IOPCSecurityNT]

[IOPCSecurityPrivate]

IOPCCommon

IOPCServer

[IOPCServerPublicGroups]

[IOPCBrowseServerAddressSpace]

[IPersistFile]

Standard
OPC Data

Access Server
Object

IUnknown

IConnectionPointContainer

Note: As an example, this OPC Data Access 2.0 server shows the relationship of the IOPCSecurity interface to the
OPC server object

3.1.1 IOPCSecurityNT
HRESULT IsAvailableNT([out] BOOL *pbAvailable);;
HRESULT QueryMinImpersonationLevel([out] DWORD *pdwMinImpLevel);
HRESULT ChangeUser(void);

3.1.2 IOPCSecurityPrivate
HRESULT IsAvailablePriv([out] BOOL *pbAvailable);;
HRESULT Logon([in, string] LPCWSTR szUserID, [in, string] LPCWSTR szPassword);
HRESULT Logoff(void);

13

OPC Security Custom Interface (Version 1.0)
4. Custom Reference

4.1 Interface Issues
Please refer to the OPC Common Interface Issues section in the OPC Common specification for a
description of issues which are common to all interfaces, and for some background information about
how the designers of OPC expected these interfaces to be implemented and used.

4.2 Overview
Every OPC Server (DA, A&E, HDA, etc.) implementing OPC Security must implement either one or
both interfaces completely.

IOPCSecurityNT Control access using NT credentials

IOPCSecurityPrivate Control access using private credentials

A client may not assume the presence of this interface on a server and is expected to handle the lack of
either one or both gracefully. A client can call QueryInterface() for both security interfaces. The
client knows that the OPC server is implementing OPC Security if at least one of the calls returns a
valid interface pointer.

As already depicted in the OPC Server object (see figure above in section 3.1 “OPC Server” Object),
both the NT and the private credential interfaces reside in the OPC server’s root COM object. This root
object defines a COM session; all dynamic security settings and changes affect all interfaces and child
objects obtained from this root object.

A typical scenario is described below, using an OPC Data Access Server:

1. After the instantiation of the OPC server, a client commonly obtains a pointer to the IOPCServer
interface. This server interface defines the session.

2. A pointer to one of the OPC Security interfaces can be returned to a call of
QueryInterface(). This interface allows control of the dynamic security setting for the
session.

3. Usually a client adds OPC groups by calls to the IOPCServer::AddGroup() method. Items
can be added to and managed by the OPC groups. These child objects and interfaces are also part
of the same session. A change in credentials not only affects the interfaces of the server object but
of all OPC group objects also.

4.2.1 Behavior of Servers Implementing Both OPC Security Interfaces
If both interfaces are currently enabled, by default the OPC Server will assume that the client is
operating using NT credentials, and will continue to do so until the client explicitly invokes the
IOPCSecurityPrivate::Logon method. Once this has occurred, the OPC Server will make all
access authorization decisions based on the private credential until the client invokes
IOPCSecurityPrivate::Logoff. During the time between the Logon()and Logoff(), a
call to IOPCSecurityNT::ChangeUser will be invalid and will result in an error return.

14

OPC Security Custom Interface (Version 1.0)
4.3 IOPCSecurityNT

This is an optional interface and will not be supported by servers not implementing OPC Security. A
client may not assume the presence of this interface on a server.

By the presence of this interface, the server promises to provide OPC Security through NT credentials.
This interface must be implemented completely. If authorization using NT credentials is disabled by
server configuration, QueryInterface() may still return a valid IOPCSecurityNT pointer. All
calls but IsAvailableNT() will return error codes, IsAvailableNT() will set the bAvailable to
FALSE to signal that NT credentials are currently disabled.

Certain servers will need impersonation or even delegation for proper access to their data sources.
Please see comments in the description of
IOPCSecurityNT::QueryMinImpersonationLevel() below.

The client must not change user credentials without also calling ChangeUser(). The expected OPC
Server behavior is to continue to base access decisions on the user credentials in effect at the last
invocation of ChangeUser(), until the client makes a new call to that method.

15

OPC Security Custom Interface (Version 1.0)
4.3.1 IOPCSecurityNT::IsAvailableNT
HRESULT IsAvailableNT(

[out] BOOL *pbAvailable
);

Description

Query the current security configuration of the OPC server to determine if the current server
configuration provides OPC Security by NT credentials.

Parameters Description

pbAvailable • TRUE: current configuration allows authorization using NT credentials
• FALSE: current configuration has authorization using NT credentials

disabled

Return Codes

Return Code Description

S_OK The operation succeeded.

E_FAIL The operation failed.

E_INVALIDARG An argument to the function was invalid

Comments

All servers implementing OPC Security are expected to fully implement this method; that is to say,
calls will not return E_NOTIMPL.

It is expected that a security aware client will call this method to query the current security settings a
server has to offer.

This method pertains to server wide configuration settings by a system administrator, and does not
reflect current state of the client session. Specifically, in the case where a server supports both
IOPCSecurityNT and IOPCSecurityPrivate interfaces, the result of this method will not reflect any
state change depending on which interface is currently being used.

16

OPC Security Custom Interface (Version 1.0)
4.3.2 IOPCSecurityNT::QueryMinImpersonationLevel
HRESULT QueryMinImpersonationLevel(

[out] DWORD *pdwMinImpLevel
);

Description

Information method to help a client to determine the minimal impersonation level the server requires
to gain proper access to secured data sources.

Parameters Description

pdwMinImpLevel Least required impersonation level for proper access.
• RPC_C_IMP_LEVEL_ANONYMOUS
• RPC_C_IMP_LEVEL_IDENTIFY
• RPC_C_IMP_LEVEL_IMPERSONATE
• RPC_C_IMP_LEVEL_DELEGATE
See also COM documentation for details.

Return Codes

Return Code Description

S_OK The operation succeeded.

E_FAIL The operation failed.

E_INVALIDARG An argument to the function was invalid

Comments

When using NT credentials, a server can control and enforce access to secured objects in different
ways. Some servers might even need to retrieve data by another DCOM call to a remote COM server
on a third machine. This scenario could require Delegation to gain access to the remote data source.

It is expected that clients will match the impersonation level of their proxy blanket with the
requirements of the OPC server.

Servers should not change the minimal impersonation level dynamically while one session is still
active.

If the client has not set the impersonation level appropriately, the server will behave as follows:

• Return OPC_E_LOW_IMPERS_LEVEL for calls to ChangeUser().

• Return E_ACCESSDENIED to any calls which access security objects.

See section 6.3.4.5 Impersonation Levels for additional information.

17

OPC Security Custom Interface (Version 1.0)
4.3.3 IOPCSecurityNT::ChangeUser
HRESULT ChangeUser();

Description

Signal the server that the client has changed the user credentials of its proxy blanket.

Parameters Description

Void

Return Codes

Return Code Description

S_OK The operation succeeded.

E_FAIL The operation failed.

OPC_E_PRIVATE_ACTIVE An IOPCSecurityPrivate::Logon is currently
active.

OPC_E_LOW_IMPERS_LEVEL The client has failed to set the impersonation level as
required by the server. See
QueryMinImpersonationLevel.

Comments

A call to this method delivers an “event” to the server to reassess the (potentially cached) user
credentials at the server side. The client must set the user credentials and impersonation level of this
interface’s proxy blanket before calling this method. A server will determine the new user credentials
by querying its client blanket.

If a server needs a correct Access Token to access its data sources (e.g. a file or database with an
Access Control List), the server may copy and cache the calling thread’s Access Token. This cached
Access Token can be reapplied later when the client issues an OPC call requiring access to the secured
object (see Win32 API for DuplicateToken, SetThreadToken).

If a client has not called this method prior to accessing a secured object, the expected behavior of the
OPC Server is that it will base its access authorization decisions on the client credentials in effect at the
time of connection to the server.

18

OPC Security Custom Interface (Version 1.0)
4.3.4 Use Scenario

The following interaction diagram shows a scenario in which a client accesses an OPC Data Access
server to perform a synchronous read operation. The server implements OPC Security using NT
credentials.

Query for IOPCSecurityNT
Interface

 : OPC Client OPC DA Server OPC DA Group

The call succeeds - Subsequent
calls assume that we implement
this interface

Return TRUE -
Subsequent calls assume that
server is configured to use NT
Credentials.IOPCSecurityNT::IsActiveNT

IOPCSecurityNT:: QueryMin
ImpersonationLevel

IOPCSecurityNT::ChangeUser Capture the new Access Token - all
subsequent calls will be done on

behalf of caller with this identity

Query for IOPCSyncIO

IOPCSyncIO::Read

PrivilegesVerify Execute logic based on
the caller privileges

Set the impersonation level
of the proxy blanket for this
interface.

19

OPC Security Custom Interface (Version 1.0)
4.4 IOPCSecurityPrivate

This is an optional interface and will not be supported by servers not implementing OPC Security
using Private Credentials. A client may not assume the presence of this interface on a server.

By the presence of this interface, the server promises to provide OPC Security through private
credentials. This interface must be implemented completely. If authentication by private credentials is
disabled by server configuration, QueryInterface() may still return a valid IOPCSecurityPrivate
pointer. All calls but IsAvailablePriv() will return error codes, IsAvailablePriv() will
set the bAvailable to FALSE to signal that private credentials are currently disabled.

20

OPC Security Custom Interface (Version 1.0)
4.4.1 IOPCSecurityPrivate::IsAvailablePriv
HRESULT IsAvailablePriv(

[out] BOOL *pbAvailable
);

Description

Query the current security configuration of the OPC server to determine if the current server
configuration provides OPC Security by private credentials.

Parameters Description

pbAvailable • TRUE: current configuration allows authentication by private credentials
• FALSE: current configuration has authentication by private credentials

Return Codes

Return Code Description

S_OK The operation succeeded.

E_FAIL The operation failed.

E_INVALIDARG An argument to the function was invalid

Comments

All servers implementing OPC Security using Private Credentials are expected to fully implement this
method; that is to say, calls will not return E_NOTIMPL.

It is expected that a security aware client will call this method to query the current security settings a
server has to offer.

This method pertains to server wide configuration settings by a system administrator, and does not
reflect current state of the client session. Specifically, in the case where a server supports both
IOPCSecurityNT and IOPCSecurityPrivate interfaces, the result of this method will not reflect any
state change depending on which interface is currently being used.

21

OPC Security Custom Interface (Version 1.0)
4.4.2 IOPCSecurityPrivate::Logon
HRESULT Logon(

[in, string] LPCWSTR szUserID,
[in, string] LPCWSTR szPassword
);

Description

Changes the identity of the client application’s user. Future access to any security objects will be
authorized with the new user’s credentials until a subsequent call to Logoff() or Logon(). For
OPC Servers which also implement IOPCSecurityNT, access checking with NT credentials will be
disabled until Logoff() is called.

Parameters Description

szUserID The user’s logon name; for logons in NT domains this string contains also
the domain name, e.g., “OPC\Ben”

szPassword The user’s password.

Return Codes

Return Code Description

S_OK The operation succeeded.

E_FAIL The operation failed.

E_ACCESSDENIED The credentials passed in could not be authenticated.

OPC_S_LOW_AUTHN_LEVEL Server expected higher level of packet privacy

Comments

To prevent clear text passwords from being transmitted across the wire, the client application is
expected to call CoSetProxyBlanket() to raise the level of authentication on this interface to be
RPC_C_AUTHN_LEVEL_PKT_PRIVACY before calling this function. The server will check the
authentication level on entry to this method and will return a status code signaling low level of privacy.
However, servers will NOT enforce this level of privacy. Instead, they will return a status code as an
indication to the client. If the proper authentication level has not been set, the exposure of the password
would already be done when the server receives the method call.

The server may use a vendor specific database to lookup the user ID and password. Initial registration
of the user ID and password are also vendor specific.

Any further call of Logon() without any prior call to Logoff() will change to the newly supplied
credentials immediately.

22

OPC Security Custom Interface (Version 1.0)
4.4.3 IOPCSecurityPrivate::Logoff
HRESULT Logoff();

Description

Remove the private credential established by the previous call to Logon(). OPC Security reverts to
the state before the first call of Logon(), there are no private credentials active for the client.

Parameters Description

Void

Return Codes

Return Code Description

S_OK The operation succeeded.

E_FAIL The operation failed.

Comments

23

OPC Security Custom Interface (Version 1.0)
4.4.4 Use Scenario

The following interaction diagram shows a scenario in which a client accesses an OPC Data Access
server to perform a synchronous read operation. The server implements OPC Security using private
credentials.

OPC Client OPC DA Server OPC DA Group

The call succeeds - Subsequent
calls assume that we implement
this interface

Return TRUE -
Subsequent calls assume that
server is configured to use Private
Credentials.

Query for IOPCSecurityPrivate
Interface

IOPCSecurityPrivate::IsActivePriv

IOPCSecurityPrivate::Logon

Verify and Capture the new User Credentials
- all subsequent calls will be done on behalf

of caller with this identity

IOPCSecurityPrivate::Logoff

Query for IOPCSyncIO

IOPCSyncIO:Read

PrivilegesVerify Execute logic based on
the caller privileges

24

OPC Security Custom Interface (Version 1.0)
4.5 NT Credential Approach

The concepts and code snippets are part of the source code of the OPC security sample server as
offered by the OPC foundation (see http://www.opcfoundation.org).

4.5.1 Server Security
The mechanism of using NT credentials relies on the user credentials inherently sent along with COM
calls. This implies minimal settings of DCOM/RPC authentication to allow proper identification of the
calling user.

A security aware OPC server must have a chance to identify and authenticate the calling user. The
server requires at least an authentication level of RPC_C_AUTH_LEVEL_CONNECT, which allows
the server to properly identify a client. For the server to be able to act on behalf of the client, it is
recommended that the server requires an impersonation level of
RPC_C_IMP_LEVEL_IMPERSONATE. The server has to enforce the correct minimum
authentication level by calling CoQueryClientBlanket() on entry of the secured method.

4.5.1.1 Using a Private ACL to Control Access
A typical OPC server could use the following Win32 calls to determine the credentials of the caller ,
using private ACLs to grant and/or deny access to the OPC Server’s secured objects (any error
handling is omitted for clarity):

 //impersonate the calling client
::CoImpersonateClient();

::CoQueryClientBlanket(NULL, NULL, NULL, NULL, &dwAuthLevel, NULL, NULL);
if (dwAuthLevel < RPC_C_AUTHN_LEVEL_CONNECT) {
 return E_ACCESSDENIED;
}

HANDLE hToken;
//retrieve the access token handle for this thread
::OpenThreadToken(::GetCurrentThread(), TOKEN_QUERY, FALSE, &hToken));
DWORD dwMappedAccess;
GENERIC_MAPPING mapping;
//dwReqAccess is the required access to check for, and is declared and set
//externally to this code snippet.
dwMappedAccess = dwReqAccess;
memset(&mapping, 0xff, sizeof(GENERIC_MAPPING));
mapping.GenericRead = SEC_ACCESS_READ;
mapping.GenericWrite = SEC_ACCESS_WRITE;
mapping.GenericExecute = 0;
mapping.GenericAll = SEC_ACCESS_READ | SEC_ACCESS_WRITE;
::MapGenericMask(&dwMappedAccess, &mapping);

PRIVILEGE_SET PrivilegeSet;
DWORD lenPrivSet = sizeof(PRIVILEGE_SET);
DWORD dwAccessGranted;

// check thread access token against ACL in SD
::AccessCheck(psdAccess, hToken, dwMappedAccess, &mapping,
 &PrivilegeSet, &lenPrivSet, &dwAccessGranted, &bAccessOK));

This code first impersonates the calling user for the current server thread, and opens a thread access
token to represent the calling user’s security context. It also checks if the least required authentication
level was set by the client prior to the call.

25

http://www.opcfoundation.org/

OPC Security Custom Interface (Version 1.0)
psdAccess in the above code is a security descriptor which holds a list of accepted and denied users and
or groups (also called an ACL). This security descriptor is typically created from access information
read from the server’s configuration when the server starts up. There may be even many security
descriptors to represent different access controls for the secured OPC objects.

The thread access token and the security descriptor are then handed to the AccessCheck() call of
NT. The AccessCheck() function determines whether a security descriptor grants a specified set of
access rights to the client identified by an access token.

4.5.1.2 Using a System ACL to Control Access
The typical use to employ system ACLs could be a server accessing system objects, such as files, etc.
These objects have system ACLs assigned and controlled by the operating system. These system ACLs
can commonly be controlled through standard system means, e.g. for NTFS files use the Properties
dialog within the File Explorer, selecting the tab Security. A typical code snippet for ChangeUser()
could look as below:
 //impersonate the calling client
::CoImpersonateClient();

::CoQueryClientBlanket(NULL, NULL, NULL, NULL, &dwAuthLevel, NULL, NULL);
if (dwAuthLevel < RPC_C_AUTHN_LEVEL_IMPERSONATE) {
 return E_ACCESSDENIED;
}

HANDLE hToken;
//retrieve the access token handle for this thread
::OpenThreadToken(::GetCurrentThread(),
 TOKEN_QUERY | TOKEN_DUPLICATE | TOKEN_IMPERSONATE, FALSE, &hToken));

::DuplicateToken(hToken, SecurityImpersonation, &m_hCachedToken));

After impersonating the calling client, this snippet first checks for the correct authentication level of
the calling proxy. In this case it would at least have to be Impersonation level. It then opens the thread
token and copies the calling thread token into a cache. This cached handle could then be used in future
calls to impersonate the same identity again while trying to access system objects:

// reassume the cached identity:
::SetThreadToken(NULL, m_hCachedToken);
FILE *hFile = fopen(“someFileWithValueForOPC_Item.txt”, "r");
if (hFile == NULL) {
 // failed to open, could be “access denied” or simply “file not found”
 return HRESULT_FROM_WIN32(GetLastError());
}
// do something to retrieve new value
....................
fclose(hFile);
// revert to previous caller context:
::SetThreadToken(NULL, NULL);

4.5.2 Client Security

4.5.2.1 General Approach
When the client calls a server method, the COM layer keeps track of the user’s credentials executing
the call if a minimal authentication level is set. To change the user context to a different user, the
client program must change the client proxy blanket before the next call. This change in context affects
for all methods in one COM interface and remains in effect until the proxy blanket is changed again.

26

OPC Security Custom Interface (Version 1.0)
The client could implement the following code snippet (again error handling is skipped for brevity):

DWORD nAuthnLevel , nAuthnSvc, nAuthzSvc, nImpLevel, grfCap;
RPC_AUTH_IDENTITY_HANDLE hAuth = NULL;
OLECHAR* pszServerPrincipal;
CoQueryProxyBlanket(pUnk, &nAuthnSvc, &nAuthzSvc, &pszServerPrincipal,
 &nAuthnLevel, &nImpLevel, &hAuth,
 &grfCap);

// using NTLMSSP, e.g. WinNT authorization
nAuthnSvc = RPC_C_AUTHN_WINNT;
g_pauthIdentity = new SEC_WINNT_AUTH_IDENTITY_W;
// pauthIdentity must remain allocated until we set a different (or NULL)
identity
// to proxy (see also documentation to CoSetProxyBlanket())
g_pauthIdentity->Domain = pszDomain;
g_pauthIdentity->User = pszUser;
g_pauthIdentity->Password = pszPass;// Clear text password
g_pauthIdentity->DomainLength = wcslen(pszDomain);
g_pauthIdentity->UserLength = wcslen(pszUser);
g_pauthIdentity->PasswordLength = wcslen(pszPass);
g_pauthIdentity->Flags = SEC_WINNT_AUTH_IDENTITY_UNICODE;

CoSetProxyBlanket(pUnk, nAuthnSvc, nAuthzSvc, pszServerPrincipal,
 nAuthnLevel, nImpLevel, g_pauthIdentity, grfCap);

Note that the memory for the SEC_WINNT_AUTH_IDENTITY structure must remain allocated until
the proxy blanket is set to another user or reset to process identity.

4.5.2.2 Client and Server on the Same Machine
The above approach based on CoSetProxyBlanket() is not applicable when both the client and
server are on the same machine, because calls are made using LRPC. In this case, the implicit creation
of an NT Access Token based on a user account specification via CoSetProxyBlanket() will not
work. Instead, an approach like the following must be used:

1. An NT Access Token must be explicitly generated, for example by using LogonUser(). Note
that the caller of LogonUser() must have the SE_TCB_NAME privilege, which may be
problematic in many applications.

2. The NT Access Token must then be assigned to the calling thread, e.g. by using
SetThreadToken() or ImpersonateLoggedOnUser().

3. The client proxy blanket can then be set, e.g. by using
IClientSecurity::SetBlanket().

Since the case of a client needing to change user credential running on the same machine as the server
is expected to be extremely rare, no sample code has been implemented.

27

OPC Security Custom Interface (Version 1.0)
5. Installation

5.1 Server Installation Issues
OPC Security does not need additional registry entries. However, the security proxy DLL
opcSec_PS.dll must be installed and registered for the server.

The installation should be done as specified in section, 6.5, “Installing OPC Binaries” in the OPC
Common Definitions and Interfaces document.

5.2 Client Installation
The security proxy DLL opcSec_PS.dll must be installed and registered for the client.

The installation should be done as specified in section, 6.5, “Installing OPC Binaries” in the OPC
Common Definitions and Interfaces document.

28

OPC Security Custom Interface (Version 1.0)
6. Appendix

6.1 IDL File

6.1.1 OPC Security Custom Interface IDL Specification
The current files require MIDL compiler 3.00.15 or later and the WIN NT 4.0 release SDK.

Use the command line: MIDL /ms_ext /c_ext /app_config opSec.idl.

The resulting OPCSEC.H file should be included in all clients and servers.

The resulting OPCSEC_I.C file defines the interface IDs and should be linked into all clients and
servers.

NOTE: This IDL file and the Proxy/Stub generated from it should NEVER be
modified in any way. If you add vendor specific interfaces to your server (which
is allowed) you must generate a SEPARATE vendor specific IDL file to describe
only those interfaces and a separate vendor specific ProxyStub DLL to marshall
only those interfaces.

// opcSec.IDL
// REVISION: 16.09.99 13:41 (PST)
// VERSIONINFO 0.91
//

import "oaidl.idl" ;

//**
//Interface Definition
//**
[

object,
uuid(7AA83A01-6C77-11d3-84F9-00008630A38B),
helpstring("Optional OPC server interface to access OPC extended
security with NT credentials"),
pointer_default(unique)

]
interface IOPCSecurityNT : IUnknown
{

[
helpstring("Query if current server configuration makes NT
credentials available")

]
HRESULT IsAvailableNT([out] BOOL *pbAvailable);

[

helpstring("Query minimal server requirements for DCOM
impersonation level")

]
HRESULT QueryMinImpersonationLevel([out] DWORD *pdwMinImpLevel);

[

helpstring("Notify current OPC session of change in user
credentials in proxy blanket")

]

29

OPC Security Custom Interface (Version 1.0)
HRESULT ChangeUser(void);

};

[

object,
uuid(7AA83A02-6C77-11d3-84F9-00008630A38B),
helpstring("Optional OPC server interface to access OPC extended
security with private credentials"),
pointer_default(unique)

]
interface IOPCSecurityPrivate : IUnknown
{

[
helpstring("Query if current server configuration makes private
credentials available")

]
HRESULT IsAvailablePriv([out] BOOL *pbAvailable);

[

helpstring("Logon current OPC session using these private
credentials; this commonly disables server's use of NT
credentials")

]
HRESULT Logon([in, string] LPCWSTR szUserID, [in, string] LPCWSTR
szPassword);

[

helpstring("Clear previous credential and revert to default
(initial state before first logon call)")

]
HRESULT Logoff(void);

};

//**
// This TYPELIB is generated as a convenience to users of high level tools
// which are capable of using or browsing TYPELIBs.
// 'Smart Pointers' in VC6 is one example.
//**
[

uuid(7AA83AFF-6C77-11d3-84F9-00008630A38B),
version(1.0),
helpstring("OPC Security 1.0 Custom Interface Type Library")

]
library opcSec
{

importlib("stdole32.tlb");
importlib("stdole2.tlb");

interface IOPCSecurityNT;
interface IOPCSecurityPrivate;

};

30

OPC Security Custom Interface (Version 1.0)
6.2 OpcErrSec.h

/*++

Module Name:
 OpcErrSec.h

Author:
OPC Security Task Force

Revision History:
Release 1.0 08/18/00
 OPC security HRESULTs
--*/

/*
Facility Code Assignments:
 0000 to 0200 are reserved for Microsoft use
 (although some were inadvertently used for OPC 1.0 errors).
 0200 to 8000 are reserved for future OPC use.
 8000 to FFFF can be vendor specific.

*/

#ifndef __OPC_ERR_SEC_H
#define __OPC_ERR_SEC_H

//
// Values are 32 bit values laid out as follows:
//
// 3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1
// 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
// +---+-+-+-----------------------+-------------------------------+
// |Sev|C|R| Facility | Code |
// +---+-+-+-----------------------+-------------------------------+
//
// where
//
// Sev - is the severity code
//
// 00 - Success
// 01 - Informational
// 10 - Warning
// 11 - Error
//
// C - is the Customer code flag
//
// R - is a reserved bit
//
// Facility - is the facility code
//
// Code - is the facility's status code
//
//

// TODO/dj: Although we believe there are no current conflicts, the
// HRESULT values need to be coordinated with those of other OPC
// specifications.

//
// MessageId: OPC_E_PRIVATE_ACTIVE
//

31

OPC Security Custom Interface (Version 1.0)
// MessageText:
//
// OPC Security: A session using private OPC credentials is already
active.
//
#define OPC_E_PRIVATE_ACTIVE ((HRESULT)0xC0040301L)

//
// MessageId: OPC_E_LOW_IMPERS_LEVEL
//
// MessageText:
//
// OPC Security: Server requires higher impersonation level to access
secured data.
//
#define OPC_E_LOW_IMPERS_LEVEL ((HRESULT)0xC0040302L)

//
// MessageId: OPC_S_LOW_AUTHN_LEVEL
//
// MessageText:
//
// OPC Security: Server expected higher level of package privacy.
//
#define OPC_S_LOW_AUTHN_LEVEL ((HRESULT)0x00040303L)

#endif // __OPC_ERR_SEC_H

32

OPC Security Custom Interface (Version 1.0)
6.3 Guidelines

6.3.1 DCOM Security Setup and Settings

6.3.1.1 Recommended Security Setup
The general problem of the DCOM setup has already been explained in a white paper available on the
OPC Foundation Website (OPC DCOM White Paper, Revision 2 – Thursday, April 9, 1998). This
section provides guidelines about the DCOM setup, regardless of whether or not OPC Security is
going to be used.

There are several security configuration settings that affect application (Client or Server) calls in
DCOM. These settings can be controlled either:

• Programmatically by each individual application by calling CoInitializeSecurity()
immediately after calling CoInitializeEx().

• Using the DCOMCNFG.EXE tool to configure settings for a given application (using what is
called the application AppId).

• Using the DCOMCNFG.EXE tool to configure default settings for all applications that don’t rely
on specific settings or/and don’t have an AppId.

The DCOMCNFG.EXE tool is an offline tool that makes modifications to the DCOM configuration
keys stored into the registry. If an application doesn’t call CoInitializeSecurity(), the
system reads the DCOM configuration from the registry at application startup time.

When using the notification mechanism between the server and the DCOM client, in terms of DCOM
settings, the server is the client (caller) and the client is the server (callee). If the DCOM client is not
configured to allow the server to access its call back methods, notifications will not work. The client
application can avoid these problems by calling CoInitializeSecurity() to allow any server
to access its notification interfaces.

6.3.1.1.1 Summary of DCOM Configuration Methods
DCOM settings by : For an OPC Server For an OPC Client

Application
Calling
CoInitializeSecurity

Recommended only for
debugging purposes ;
See the section DCOM Security
Bypass below.

Recommended method to avoid
any notification problems; see
below for recommended
arguments.

Using DCOMCNFG to configure
application settings

Recommended, but don’t forget
(in the Identity tab) to avoid
selecting the launching user

Not recommended, since not all
client applications will be visible
in DCOMCNFG.

Using the DCOMCNFG to
configure system-wide default
settings

Not recommended Not recommended

Recommended CoInitializeSecurity() arguments for the client application:

CoInitializeSecurity(NULL, -1, NULL, NULL, RPC_C_AUTHN_LEVEL_NONE,
RPC_C_IMP_LEVEL_IDENTIFY, NULL, EOAC_NONE, NULL);

6.3.1.1.2 Summary of DCOM Configuration Values:

33

OPC Security Custom Interface (Version 1.0)
6.3.1.1.2.1 OPC Security Using NT Credentials and DCOM Security

The DCOM setup should be done both on the client machine and the server machine. The values
indicated below assume that both client and server machines are members of an NT Domain or
of NT Domains which have a trust relationship.

 Client Machine Server Machine
Authentication
Level(negotiated between client
and server, higher level wins)

None Connect

Impersonation Level(client
level only taken into account)

Impersonate(or Delegate if
required by server, see
QueryMinImpersonationLevel)

COM selects the impersonation
level as set by the client

Access Permission None, to avoid call back
problems (see previous section)

List of users defined using
DCOMCNFG

Launch Permission Not applicable List of users defined using
DCOMCNFG

In order to facilitate the first usage of an OPC server with DCOM, the install process of this server
may set some DCOM registry keys. An example is to create an AppId and apply the default values
defined above.

6.3.1.1.2.2 OPC Security Using Private Credentials and Disabled Security
The table below summarizes the DCOM security settings for clients and servers, where the server is
implementing either Disabled Security or OPC Security using Private Credentials only. Servers which
implement OPC Security using Private Credentials together with DCOM Security or OPC Security
Using NT Credentials should use the security settings recommended in the previous table.

 Client Machine Server Machine
Authentication
Level(negotiated between client
and server, higher level wins)

None, except that the client
should raise the level to Privacy
when calling Logon to protect
the private credential.

None

Impersonation Level(client
level only taken into account)

Identify Identify

Access Permission None, to avoid call back
problems

None, to allow all clients to
connect

Launch Permission Not applicable List of users defined using
DCOMCNFG (if the server is
running on NT)

6.3.1.2 Windows 95/98 DCOM
The latest version of DCOM for Windows 95 and Windows 98 is available on the Web at the
following location:

http://www.microsoft.com/com/dcom/

6.3.1.2.1 Differences from DCOM on Windows NT
The following table summarizes the differences between DCOM95/98 and Windows NT.

For more information regarding DCOM for Windows 95 and 98 see the release notes found in the above
referenced Web location.

34

http://www.microsoft.com/com/dcom/dcom95/dcom1_3.asp

OPC Security Custom Interface (Version 1.0)
Service Call/API/Functionality NT4 / W2000 DCOM95/98
CoInitializeSecurity Yes Yes
CoQueryAuthenticationService Yes Yes
CoQueryProxyBlanket Yes Yes
CoSetProxyBlanket Yes Yes
CoQueryClientBlanket Yes Yes
IClientSecurity Interface Yes Yes
IserverSecurity Interface Yes Yes
AccessCheck Yes No

Impersonation Yes No
CoImpersonateClient Yes No
CoRevertToSelf Yes No

CLSID_DCOMAccessControl Yes Yes
IAccessControl Interface Yes Yes

Launching Servers Yes No
Access Security Yes Yes
AccessPermissions Registry Key Yes Yes

Authentication Levels for Clients All Levels All Levels

Authentication Levels for Servers/Clients
Receiving callbacks

RPC_C_AUTHN_LEVEL_NONE Yes Yes
RPC_C_AUTHN_LEVEL_CONNECT Yes Yes

6.3.1.2.1.1 Security Capabilities of DCOM95/98
The core functionality and application programming interface (API) for DCOM95/98 are identical in
both Windows 95/98 and Windows NT 4.0. However, certain capabilities related to security are
different because of the different security infrastructures of the operating systems.

6.3.1.2.1.2 Launch and Access Security
Controlling who can launch server-class code is not supported in DCOM95/98, because launching
servers is not supported. Servers/classes must already be running in order for remote clients to connect
to them and make use of their services.

6.3.1.2.1.3 Authentication Levels
DCOM95/98 clients can make DCOM calls using any authentication level. DCOM95/98 servers or
clients receiving callbacks can accept only DCOM calls using RPC_C_AUTHN_LEVEL_NONE or
RPC_C_AUTHN_LEVEL_CONNECT authentication levels.

6.3.1.2.1.4 Transports
DCOM95/98 supports only TCP connectivity.

35

OPC Security Custom Interface (Version 1.0)
6.3.2 In-Process Server Considerations

6.3.2.1 Private Credentials
There is no difference in the behavior of methods included in the IOPCSecurityPrivate interface for
OPC Servers which execute in-process than for OPC Servers which execute locally or remotely.

6.3.2.2 NT Credentials
Some calls to NT functions which impersonate a client may behave differently when invoked by an in-
process server than when invoked by a server which executes locally or remotely. In order to avoid
such problems, it is recommended that servers which are configured to be invoked in-process should
not attempt to impersonate the client, but should base their access decisions on the NT Access Token
of the thread in which they are executing.

In addition, it is recommended that clients of in-process servers not implement any capability to
dynamically change a user's NT Credentials during a session, since the behavior will be unpredictable.

Specific implications for in-process servers which support OPC Security with NT Credentials are:

• Server implementation of IOPCSecurityNT can be the same as for local/remote servers, with the
exception of ChangeUser(). In-process servers should perform no action in response to this
call other than to return S_OK.

• Clients of in-process servers should never call ChangeUser(), since it has no effect in this
context.

• Clients of in-process servers should not explicitly set the security context (e.g. via
CoSetProxyBlanket()).

36

OPC Security Custom Interface (Version 1.0)
6.3.3 Local/Remote Server Configuration Parameters

These parameters are not mandatory. This section is only a guideline.

However, it is expected that most servers that implement the IOPCSecurityNT and/or
IOPCSecurityPrivate interface (that is to say those that support OPC Security), support also most of
the parameters described below.

6.3.3.1 DCOM Security Bypass
The goal of this parameter is to tell the server whether or not it should disable all the DCOM security
in order for example, to allow a quick test.

If this parameter is ON, the server should call CoInitializeSecurity() method in order to
grant access to its interfaces to any OPC client. If the server is not running when the client tries to get
access, DCOM settings of the registry are always used to determine whether or not the client is
authorized to launch the server. The access permissions will not be disabled via the call to
CoInitializeSecurity() until the server has been launched.

If this parameter is OFF, the server should do nothing special, it should NOT call the
CoInitializeSecurity() method, but rely on the settings of the DCOM configuration utility
(Dcomcnfg).

This parameter may be supported even if the OPC server doesn’t support any OPC Security options.

6.3.3.1.1 Sample code to disable any DCOM security
CoInitializeSecurity(NULL, -1, NULL, NULL,
 RPC_C_AUTHN_LEVEL_NONE,
 RPC_C_IMP_LEVEL_IDENTIFY, NULL,
 EOAC_NONE, NULL);

6.3.3.1.2 DCOM Security and OPC Security Using NT Credentials
The goal of DCOM Security is to grant or to deny access to the server interfaces. The goal of OPC
Security is to grant or to deny access to some server internal resources.

If you are dealing with OPC Security, it means you have access to the server interfaces: either you
meet the DCOM Security requirements or the latter is actually disabled.

For debugging purposes it is possible to enable OPC Security while DCOM Security is disabled, but in
normal situations, if OPC Security is enabled, DCOM Security should be enabled as well.

6.3.3.2 Security Auditing
The server implementer might consider providing a parameter which would allow the administrator of
the OPC server to enable or disable the logging by the server of any security events into the system
(for example, Windows NT) security log file.

In order to facilitate troubleshooting (in case of any problem, the server always returns
E_ACCESSDENIED), the server implementer might consider providing some additional parameters to
configure the level of details that should be reported.

This parameter may be only an enable/disable switch or may allow the administrator to choose which
kind of event should be reported and makes sense even if the OPC server doesn’t support the OPC
Security.

37

OPC Security Custom Interface (Version 1.0)
6.3.4 Windows 2000 and Windows NT Considerations

All Windows 2000 guidelines are based on testing with standard released versions of the operating
system.

6.3.4.1 Compatibility With Windows NT4
On the COM level the security model stays the same in Windows 2000. Only the underlying Security
Service Provide (SSP) was exchanged with the superior Kerberos (RFC 1510). COM will be affected
by Kerberos introduction of delegation and cloaking. Windows 2000 uses the same namespace model
as NT4 and will keep using the term domain for the Kerberos equivalent realm.

6.3.4.1.1 Kerberos Credentials
The primary authentication protocol for the Windows 2000 domain is Kerberos authentication.
Kerberos credentials consist of the domain and the user name (which could be in the form of Internet
friendly names, such as Security@opcfoundation.org), and the Kerberos-style encrypted password.
When the user logs on to the system, Windows 2000 obtains one or more Kerberos tickets to connect
to network services. The Kerberos tickets represent a user’s network credentials in Kerberos-based
authentication.

Windows 2000 automatically manages the Kerberos ticket cache for connections to all network
services. Tickets have an expiration time and occasionally need to be renewed. Ticket expiration and
renewal are handled by the Kerberos security provider and associated application services. Most
services, such as file system Redirector, will automatically keep session tickets up-to-date. Regular
ticket renewal gives added session security by changing the sessions keys periodically.

6.3.4.2 API Compatibility
All API’s used in our demo code are fully compatible:

LookupAccountName()

InitializeSecurityDescriptor()

InitializeAcl()

AddAccessAllowedAce()

SetSecurityDescriptorDacl()

SetSecurityDescriptorGroup()

SetSecurityDescriptorOwner()

IsValidAcl()

IsValidSecurityDescriptor()

CoQueryClientBlanket()

CoSetProxyBlanket()

CoImpersonateClient()

CoRevertToSelf()

OpenThreadToken()

AccessCheck()

38

OPC Security Custom Interface (Version 1.0)

39

6.3.4.2.1 New valid parameter values in Windows 2000:
CoInitializeSecurity():
pAuthList

The parameter pAuthList is required to be NULL in Windows NT 4. On Windows 2000, this
parameter is a pointer to a SOLE_AUTHENTICATION_LIST, which is an array of
SOLE_AUTHENTICATION_INFO structures. This list indicates the default authentication
information to use for each authentication service. It applies only to clients.

dwCapabilities
Additional capabilities of the client or server. If you want to use cloaking you need to specify
EOAC_STATIC_CLOAKING or EOAC_DYNAMIC_CLOAKING.

dwImpLevel

The default impersonation level for proxies. The value of this parameter applies when the process
is the client. It should be a value from the RPC_C_IMP_LEVEL_xxx enumeration. Outgoing calls
from the client always use the impersonation level as specified (it is not negotiated). Incoming
calls to the client can be at any impersonation level. By default, all IUnknown calls are made with
this impersonation level so even security-aware applications should set this level carefully. Only
the RPC_C_IMP_LEVEL_IDENTIFY and RPC_C_IMP_LEVEL_IMPERSONATE levels are
supported in Windows NT 4.0. In Windows 2000, RPC_C_IMP_LEVEL_DELEGATE is
supported as well.

6.3.4.3 Delegation and impersonation differences
With the Kerberos protocol, the impersonation levels identify, impersonate, and delegate can be used.
When a server calls CoImpersonateClient(), the token returned is valid off the machine for
some time period between 5 minutes and 8 hours. After this time, it can be used on the server machine
only. If a server is "run as activator" and the activation is done with the Kerberos protocol, the server's
token will expire between 5 minutes and 8 hours after activation.

6.3.4.4 Cloaking
Prior to the release of Windows 2000, when a COM server impersonated a COM client, the process
token was used to represent the client's identity. Therefore, during impersonation the client's identity
was always perceived to be that of the immediate calling process. Now that cloaking is available in
Windows 2000, COM servers (or any COM process) can set the cloaking capability flag to dynamic
cloaking in a call to CoInitializeSecurity().

Dynamic cloaking causes the thread token to be used to represent the client's identity during
impersonation. This means that servers called on the client's behalf during impersonation see the
identity of the COM client that originated the call, which is generally the desired behavior. Of course,
for impersonation to succeed, the client must have given the server authority to impersonate by setting
an appropriate impersonation level.

6.3.4.4.1 Types of Cloaking:
There are two types of cloaking, static cloaking and dynamic cloaking.

• With static cloaking (EOAC_STATIC_CLOAKING), the server sees the thread token from the
first call from a client to the server. For the first call, if the proxy identity was previously set
during a call to CoSetProxyBlanket(), that proxy identity is used. However, if the proxy
identity was not previously set, the thread token is used. If no thread token is present, the process
token is used. For all future calls, the identity set on the first call is used.

OPC Security Custom Interface (Version 1.0)

40

• When dynamic cloaking (EOAC_DYNAMIC_CLOAKING) is set, on each call the current thread
token (if there is a thread token) is used to determine the client's identity. If there is no thread
token, the process token is used. This type of cloaking is expensive.

6.3.4.5 Impersonation Levels
If impersonation succeeds, it means that the client has agreed to let the server "be" the client to some
degree. The varying degrees of impersonation are called impersonation levels, and they indicate how
much authority is given to the server when it is impersonating the client.

Currently, there are four impersonation levels: anonymous, identify, impersonate, and delegate. Prior
to Windows 2000, the only supported impersonation levels were identify and impersonate. In Windows
2000, delegate-level impersonation is supported. The following briefly describes each impersonation
level:

• At the anonymous level (not currently supported) the client is anonymous to the server. The server
process can impersonate the client but the impersonation token does not contain any information
about the client.

• At the identify level (RPC_C_IMP_LEVEL_IDENTIFY), which is the system default level, the
server can obtain the client's identity. The server can impersonate the client to do ACL checks.
Note: GetUserName() will fail while impersonating at identify level. The workaround is to
impersonate, OpenThreadToken(), revert, call GetTokenInformation(), and finally,
call LookupAccountSid().

• At the impersonate level (RPC_C_IMP_LEVEL_IMPERSONATE), the server can impersonate
the client's security context while acting on behalf of the client. The server can access local
resources as the client. If the server is local, it can access network resources as the client. If the
server is remote, it can only access resources that are on the same machine as the server. In order
for the impersonation token to be passed, you must use Cloaking, which is available in Windows
2000.

• The delegate level (RPC_C_IMP_LEVEL_DELEGATE) is the most powerful impersonation
level. When this level is selected, the server (whether local or remote) can impersonate the client's
security context while acting on behalf of the client. The server process can also make outgoing
calls to other servers while acting on behalf of the client, using Cloaking. During impersonation,
the client's credentials (both local and network) can be passed to any number of machines. This
level is supported only in Windows 2000 and later versions. In order for impersonation to work at
the delegate level, the following requirements must be met:

– The client must set the impersonation level to RPC_C_IMP_LEVEL_DELEGATE.

– The client account must not be marked "Account is sensitive and cannot be delegated" in the
Active Directory Service.

– The server account must be marked with the "Trusted for delegation" attribute in the Active
Directory Service.

– The computers hosting the client, the server, and any "downstream" servers must all be running
Windows 2000 in a Windows 2000 domain (because the Kerberos protocol is required).

– All Win32 processes involved must be running as valid Kerberos principals., i.e. local machine
accounts don’t count.

By choosing the impersonation level, the client tells the server how far it can go in impersonating the
client. The client sets the impersonation level on the proxy it uses to communicate with the server.

OPC Security Custom Interface (Version 1.0)

41

6.3.4.6 Special Considerations
Default Authentication

Windows 2000 has a new behavior for the default authentication value
RPC_C_AUTHN_LEVEL_DEFAULT. In Windows NT 4.0, this value defaults to
RPC_C_AUTHN_CONNECT. In Windows 2000 this value tells DCOM to choose the
authentication level using its normal security blanket negotiation algorithm.

	Introduction
	Background
	Key Requirements
	Purpose
	Relationship to Other OPC Specifications
	Scope of This Specification
	Security Aspects
	Levels of Security
	Operating Systems

	Prerequisites
	Deliverables

	Fundamental Concepts
	Security Reference Model
	Authorization vs. Authentication

	Application of the Model in This Specification
	Principals
	Access Certificates
	Security Objects
	Access Control Lists
	Reference Monitor
	Channels

	Levels of Security
	Private Credential vs. NT Access Token
	Optional IOPCSecurityNT and IOPCSecurityPrivate Interfaces
	Backward Compatibility

	OPC Security Quick Reference
	“OPCServer” Object
	IOPCSecurityNT
	IOPCSecurityPrivate

	Custom Reference
	Interface Issues
	Overview
	Behavior of Servers Implementing Both OPC Security Interfaces

	IOPCSecurityNT
	IOPCSecurityNT::IsAvailableNT
	IOPCSecurityNT::QueryMinImpersonationLevel
	IOPCSecurityNT::ChangeUser
	Use Scenario

	IOPCSecurityPrivate
	IOPCSecurityPrivate::IsAvailablePriv
	IOPCSecurityPrivate::Logon
	IOPCSecurityPrivate::Logoff
	Use Scenario

	NT Credential Approach
	Server Security
	Using a Private ACL to Control Access
	Using a System ACL to Control Access

	Client Security
	General Approach
	Client and Server on the Same Machine

	Installation
	Server Installation Issues
	Client Installation

	Appendix
	IDL File
	OPC Security Custom Interface IDL Specification

	OpcErrSec.h
	Guidelines
	DCOM Security Setup and Settings
	Recommended Security Setup
	Summary of DCOM Configuration Methods
	Summary of DCOM Configuration Values:
	OPC Security Using NT Credentials and DCOM Security
	OPC Security Using Private Credentials and Disabled Security

	Windows 95/98 DCOM
	Differences from DCOM on Windows NT
	
	
	Yes
	Yes
	Yes
	All Levels
	Yes

	Security Capabilities of DCOM95/98
	Launch and Access Security
	Authentication Levels
	Transports

	In-Process Server Considerations
	Private Credentials
	NT Credentials

	Local/Remote Server Configuration Parameters
	DCOM Security Bypass
	Sample code to disable any DCOM security
	DCOM Security and OPC Security Using NT Credentials

	Security Auditing

	Windows 2000 and Windows NT Considerations
	Compatibility With Windows NT4
	Kerberos Credentials

	API Compatibility
	New valid parameter values in Windows 2000:

	Delegation and impersonation differences
	Cloaking
	Types of Cloaking:

	Impersonation Levels
	Special Considerations

